CENTRAL INTELLIGENCE AGENCY

INFORMATION REPORT

This Document contains information affecting the National Defense of the United States, within the meaning of Title 18, Sections 733 and 794, of the U.S. Code, as amended. Its transmission or revelation of its contents to or receipt by an unauthorized person is prohibited by law. The reproduction of this form is prohibited.

	SECRET—U.S. OFF	TICIALS ONLY	2581	
COUNTRY	USSR (Moscow Oblast)	REPORT		
SUBJECT	The Podolsk Machine-Building Facto i/n Ordzhonikidze	DATE DISTR. NO. OF PAGES	22 October 1954 <i>20</i>	
PATE OF INFO.		REQUIREMENT NO.	RD	25X1
This is	UNEVALUATED	REFERENCES	Chorra	
	THE SOURCE EVALUATIONS IN THIS THE APPRAISAL OF CONTENT (FOR KEY SEE REVE	IS TENTATIVE.	640373 25X1	

1. The Podolsk Machine-Building Factory i/n Ordzhonikidze (Podolskiy Mashinostroitelnyy Zavod imeni Ordzhonikidze) is located in Podolsk, about 45 kilometers south of Moscow. The factory is connected to the Moscow-Kursk railroad by a broad-gauge branch line. It is under the Ministry of Transport and Heavy Machine Building and is directly subordinate to the Chief Directorate of Boiler and Turbine Industry of the ministry. The address of this chief directorate is 12 Krivokolennyy Pereulok, Moscow.

HISTORY

- 2. The factory, which was originally intended to manufacture cables for war purposes, was started at the end of 1916. With the outbreak of the Revolution in 1917, all building stopped. Construction was started again in 1922, and in 1924, the buildings were completed and equipment installed. The factory, which was allotted the name Paroremont (Locomotive Repair), repaired locomotives and manufactured spare parts for locomotives. In 1927, a small number of locomotives were also produced.
- 3. During the First Five-Year Plan, the factory was enlarged, and additional equipment was installed. Production was switched to equipment for oil cracking plants; continuous-action tubular oil refining plants (trubchatka); boring machines for oil wells; mine equipment, which consisted chiefly of accumulator-driven electric locomotives for mines; and industrial electric locomotives. This type of production continued until the outbreak of war in 1941.
- 4. In 1930, the factory was renamed Podolsk KES (Kreking-Elektrovoznogo Stroitelstva-Cracking Plant and Electric Locomotive Construction) and came under the VOMT (Vsesoyuznoye Cbyedineniye Tyazhelogo Mashinostroyeniya-All-Union Heavy Machine Building Union). At the beginning of the Second Five-Year Plan, the factory was named after Ordzhonikidze.

STATE	x	ARMY	¥	NAVY	T.,	AIR		FBI		AEC					 - 	
				L	^ _	<u> </u>	_X_		LL		1	DRR e	v :	×Ц	 1	
J-+- W!	· inaton	Distribution	la d'	~*ed By "X"	. Field	Distribution	Bv "	#"		··					 	

SECRET	II.S.	OFFICIALS	ONT V

-2-

- 5. In the fall of 1941, after the outbreak of the war, a part of the factory was evacuated, and the vacated buildings were occupied by a part of the Krasnyy Kotelshchik Boiler Factory, which had been evacuated from Taganrog. In 1942, production was almost exclusively connected with the war; but, in 1943, the manufacture of boilers (kotelnyy aggregat) and boiler equipment for electric power stations and industrial enterprises was started.
- 6. In 1943, the factory received numerous urgent orders for boilers because of the increase in the number of power stations under construction in the east and the restoration of electric power stations in areas liberated from the Germans. Boiler drums (kotelnyy baraban) were not available at this time, as the factories which produced them were engaged in the manufacture of war material; therefore, the Podolsk Boiler Factory, together with other boiler works, started producing drumless uniflow boilers of lighter weight. In 1943-1945, many Ramzin uniflow boilers of various types were manufactured without the employment of steel alloys. These boilers were not completely satisfactory; soon after being brought into use, they developed cracks in the tubes in the lower radiation part (nizhnyaya radiatsionnaya chast) of the furnace, in addition to other defects.

 Technical details of one of these boilers are as follows:

Type of boiler
Steam output
Working pressure
Steam temperature
Temperature of feed water
Furnace volume
Heating surface
Diameter of tubes
Height of boiler
Width of boiler
Length of boiler
Number of burners

SPPN 200/35
200 tons per hour
35 atmospheres
425°C
150°C
625 cubic meters
1,113 square meters
51/45 mm
18,200 mm
8,540 mm
14,300 mm
48
Mazut

7. In 1945, several uniflow boilers of an improved type were manufactured. A few technical details of this type of boiler are given below:

Mark of boiler
Steam output
Working pressure
Steam temperature
Temperature of feed water
Furnace volume
Diameter of tubes
Fuel

53 SPS-200/32 200 tons per hour 32 kg per square centimeter 4250C 150°C 1,227 cubic meters 51/44 mm Coal dust

- 8. In 1945; the government confirmed the postwar plan for the boiler and turbine industry, which allotted the manufacture of high-power boilers to the Podolsk Machine Building Factory i/n Ordzhonikidze and the Krasnyy Kotelshchik Factory at Taganrog. The Nevskiy Machine Building Factory i/n Lenin and the Leningrad Metal Factory i/n Stalin, both of which are located in Leningrad and which, before the war, had produced high power boilers, were switched over to the manufacture of steam turbines. The production of low-power boilers was allotted to new boiler works at Biysk and Barnaul. The Podolsk factory was also to produce equipment for oil cracking plants.
- 9. During 1945-1947, the factory, in addition to producing high-power boilers, also produced a large number of heating and industrial low-power boilers of Shukhov and Shukhov-Saraf systems, Ramzin system heating boilers, and Dobrin system vertical boilers, in addition to a large quantity of spare power boilers. In 1948, there was a drop in the production of low-

SECRET-US OFFICIALS ONLY

, 45°.

-3-

- 10. Production of cil equipment started in January 1946, when the factory received from the cil industry the first plans and specifications for the production of large quantities of cil equipment, consisting of 80 different varieties of equipment of total weight of about 4,000 tons, for cracking plants. The equipment included machinery and apparatus not produced by the factory before the war, such as vacuum columns (vakuumnaya kolonna) and gasoline pumps, etc. A new pump shop was introduced in 1946.
- 11. During the first years of the postwar Five-Year Plan (1946-1947), some of the cracking plant equipment, such as vacuum columns and pipe lines, was made of ordinary carbon steel and, owing to corrosion, was short-lived. The factory's designers, Engineers Braude (fnu), Koptev (fnu), Gerasimenko (fnu), and the chief metallurgist Surovtsova (fnu), together with representatives of TsNIITMASh (Central Scientific Research Institute of Heavy Machine Building) evolved means by which oil equipment subject to corrosion was made from stainless and bimetallic steel, and they were also successful in working out methods of welding stainless and bimetallic steel on automatic welding machines. All these designers received Stalin prizes for designing corrosion-proof oil equipment.
- 12. In 1947, automatic welding machines were used in the factory on external longitudinal seams and internal seams of shells (obechayka), for welding seams of boiler drums, etc. For this work, welding tractors UT-1200 were used and welding was done with flux. For other articles such as rings, flanges, and connecting pipes (patrubok), other welding machines were used. The employment of automatic welding equipment increased considerably the output of oil equipment and boilers. Eight conveyer belts were introduced for various articles, including coils for steam superheaters (zmeyevik dlya paroperegrevateley), for shells (obechayka),

TYPES OF POSTWAR PRODUCTION

Power (Energeticheskiye) Steam Boilers with Natural Circulation

13. Types of boilers are as follows: SP-4, SPK-5, PK-3, PK-4, PK-5, PK-6, PK-7, PK-8, PK-9, PK-10. Brief technical details of some of the boilers are given below:

a. SP-4-30/22

Description
Fuel
Steam output
Working pressure
Steam temperature
Steam temperature
Volume of furnace chamber
Radiation heating surface
Convective heating surface
Heating surface of steam superheater
Diameter of boiler tubes
Diameter of steam superheater
and economizer tubes
Total weight with ladders and
platforms

Header boiler (kamernyy kotel)
Brown coal
30 tons per hour
22 kg per sq cm
375°C
123 cubic meters
108 square meters
231 square meters
195 square meters
83/76 mm

38/32 mm

59.3 tons

-4-

b. SPK-5-30/22

Description

Fuel Steam output

Working pressure Temperature of superheated steam Convective heating surface of boiler Steam superheater

Water economizer

Air preheater

Boiler drum

c. PK-4-150/35

Steam output Working pressure Temperature of steam

d. PK-5-200/35

Steam output Working pressure Temperature of steam

e. PK-7-40/38

are dependent on the nature of the fuel used.

Steam output
Working pressure
Steam temperature

Temperature of flue gases

Feed water temperature

Efficiency with brown coal
Efficiency with ordinary coal
Volume of furnace chamber
Radiation heating surface
Convective heating surface
Heating surface of superheater

Heating surface of water economizer Heating surface of air preheater

Diameter of drum Length of drum

Single drum vertical water tube steam boiler with screened header furnace with three atomizers for mechanical spraying of mazut Mazut 30 tons per hour, maximum 35 tons per hour 22 kg per sq cm 397°C 242 square meters Vertical, with heating surface of 281 sq meters Coil type, with heating surface of 324 sq meters Three-way tubular type, with heating surface of 770 sq meters Seamless forged, with internal diameter of 1,000 mm and length of cylinder 6,960 mm

150 tons per hour 35 atmospheres 425°C

200 tons per hour 35 atmospheres 425°C

This boiler is designed to burn brown coal and ordinary coal. There are small differences in the design of this boiler affecting the heating surface of the steam superheater and the air preheater. These differences are dependent on the nature of the fivel word.

40 tons per hour 38 kg per square cm 420°C 100°C 180°C when burning brown coal 170°C when burning ordinary coal 88 percent 84 percent 192 cubic meters 181 sq meters 40 sq meters 189 sq meters (brown coal) and 288 sq m (ordinary coal) 403 square meters 2,130 sq m (brown coal) and 1,020 sq meters (ordinary coal) 1212/1300 mm 7,280 mm

25X1

SECRET - U.S. OFFICIALS ONLY

-5-

Diameter of boiler tubes

83/76 (brown coal) and 60/52 m (ordinary coal)

Diameter of superheater and

economizer tubes

38/31 mm

Total weight of boiler burning brown coal including ladders and platforms Tctal weight of boiler burning brown coal without ladders and platforms

159.7 tons

Total weight of boiler burning

144.8 tons

ordinary coal including ladders

and platforms

139.1 tons

f. PK-8-150/32

This boiler is constructed with a shaft mill furnace (shakhtno-melnichnaya topka) or with a coal dust furnace.

Steam output Working pressure Temperature of superheated steam

150 tons per hour 32 kg per square cm

g. PK-9-200/35

This is a header boiler which burns brown coal and hard coal (toshchiy ugd).

Steam output 200 tons per hour Working pressure 35 kg per square cm Steam temperature 425°C Feed water temperature 130°C Efficiency with brown coal 89 percent Efficiency with hard coal Volume of furnace chamber

87 percent With brown coal, 1,060 cubic meters With hard coal, 1,056 cubic meters With brown coal, 617 sq meters

Radiation heating surface With hard coal, 576 sq meters Convective heating surface 330 sq meters

Heating surface of superheater Heating surface of water economizer

1,054 sq meters 8,430 sq meters

Diameter of boiler tubes Diameter of superheater and

83 mm,

economizer tubes 38 mm

This boiler is almost identical with boiler TP-200-1, made by the Taganrog Boiler Factory.

PK-10-230/100

Steam output

Working pressure

Steam temperature

Fuel

Hard coal, brown coal, milled

peat (frezernyy torf) 230 tons per hour 100 kg per sq cm 510°C 220°C

Feed water temperature Hot air temperature with hard coal 342°C Hot air temperature with brown coal Hot air temperature with peat coal Efficiency with hard coal

394°C 413°C 86.7 percent

Efficiency with brown coal Efficiency with peat coal Volume of furnace chamber

88.5 percent 84.7 percent 1,210 cubic meters

-6-

Radiation heating surface with hard coal 136 square meters Radiation heating surface with brown coal 134 square meters Radiation heating surface with peat 133 square meters Convective heating surface 146 square meters Heating surface of superheater with hard coal 2,600 square meters Heating surface of superheater with brown coal 1,650 square meters Heating surface of superheater with peat 1,490 square meters Heating surface of water economizer 2,662 square meters Heating surface air preheater 10,830 square meters Diameter of drum 1,400/1,600 mm Length of drum 10,000 mm Diameter of boiler tubes Diameter of superheater and $76/64 \, \text{mm}$ economizer tubes 42/32 mm Total weight with ladders and platforms

The boiler is almost identical with boiler TP-230, made at the Taganrog Boiler Factory.

1,145 tons

Uniflow Boiler of Prof. L.K. Ramzin's Design with Single Forced Circulation

- 14. After the war, the following types of boiler were produced: 24 SP, 51 SP and 67 SP. These boilers include:
 - a. <u>24 SP-200/1</u>40

b. <u>51 SP-230/100</u>

Fuel Coal dust Output 230 tons per hour Pressure 100 kg per square cm Steam temperature 510°C Temperature of feed water 215°C Furnace volume 1,225 cubic meters Evaporative surface of radiation section of boiler Heating surface of transition zone 2,280 square meters (perekhodnaya zona) 1,400 square meters Heating surface of superheaters 429 square meters Heating surface of water economizer Heating surface of air preheater 1,320 square meters Diameter of tubes of radiation 8,700 square meters section 40/32, 51/40 meters

c. <u>67 SP-230/1</u>00

The first of these boilers was built in January 1952.

Fuel Moscow Basin coal dust

Output (Podmoskovny ugol)

Pressure 230 tons

Temperature of superheated steam 100 atmospheres

Temperature of feed water 510°C

215°C

This boiler is fitted with four shaft mills (shakhtnaya melnitsa), type ShM 1660/2004, and scraper type feeders. The suction and blow plant (tyagodutevaya ustanovka) consists of two flue gas pumps

-7-

(dymosos), type D-300/400, and two blow ventilators, type VD-10-14-N 40. The water economizer is the two-stage type.

Heating and Industrial Heating Boilers

15. Among these are vertical boilers, types VVD-80 and VVD-140, designed by N.G. Dobrin, which came into production in 1948. A few details are given below:

a. WD-80

Description
Output
Working pressure
Heating surface
Length of boiler
Width
Height
Weight

Two-drum vertical steam boiler 2 tons per hour 13 kg per sq cm 80 sq meters 3.16 meters 4.25 meters 4.1 meters 8.2 tons Hand-operated

b. <u>VVD-140</u>

Grate

Description
Output
Working pressure
Heating surface
Length of boiler
Width of boiler
Height of boiler
Weight of boiler
Grate

Two-drum vertical steam boiler 4 tons per hour 13 kg per sq cm 140 square meters 5.1 meters 3.88 meters 5.00 meters 12.2 tons Hand-operated

16. Also in this group is the tent type (shatrovyy tip) water tube steam boiler, type ShG-3, which was produced in 1948, 1949, and 1950.

Output
Working pressure
Heating surface
Dimensions of drum
Dimensions of chambers (kamera)
Diameter of boiling tubes
Working water volume
Steam volume
Total weight

1 ton per hour 8 atmospheres 38 sq meters 1,029 x 1,280 x 13 mm 450 x 2,730 x 13 mm 38/32 mm 2 cubic meters 1.05 cubic meters 3,260 kg

17. The factory produced water tube header boilers, types A-3, A-5, and A-7.

a. <u>A-3</u>

The boiler is made up of three sections, each with 24 tubes of 76/70 mm. The length of the drum is 2.9 meters. The diameter of the drum is 874 mm.

Output
Working pressure
Heating surface
Heating surface of superheater
Temperature of superheated steam
Weight of superheater
Weight of boiler

4 tons per hour 13 atmospheres 105 square meters 18.8 square meters 2500-300°C 1.06 tons 9.17 tons

8

b. A-5

The boiler is made up of five sections each with 24 tubes of 76/60 mm. The length of the drum is 3.9 meters. The diameter of the drum is 874 mm.

Output
Working pressure
Heating surface
Heating surface of superheater
Temperature of superheated steam
Weight of superheater
Weight of boiler

6.5 tons per hour 13 atmospheres: 175 square meters 27.6 square meters 250°-300°C 1.73 tons 13.53 tons

c. A-7

The boiler is made up of seven sections, each with 24 tubes of 76/70 mm. The length of the drum is 4.8 meters. The diameter of the drum is 8.74 mm.

Output
Working pressure
Heating surface
Heating surface of superheated steam
Temperature of superheated steam
Weight of superheater
Weight of boiler

10 tons per hour 13 atmospheres 245 sq meters 38.3 sq meters 2500-3000C 2.27 tons 17.65 tons

These boilers have hand-operated sloping grates. The boilers were produced in 1945, 1946, and part of 1947. They were produced at the Biysk Boiler Factory until 1950, when they were replaced by DKV boilers, which are of better design.

Utilizer-Boiler (Kotel-Utilizator)

- 18. The factory manufactures three types of this boiler. They are produced in the tube shop. The boiler utilizes the gases of Martin furnaces of various capacities.
- 19. The following are technical details of the MPTs type utilizer-boiler with a multiple forced circulation, which is installed with the small 35-ton Martin furnace:

Length of boiler drum
Diameter of drum
Heating surface of steam superheater
Heating surface of boiler
Heating surface of economizer
Diameter of tubes of superheater
Diameter of tubes of boiler
Diameter of tubes of economizer
Boiler output
Flue gas pump (dymosos)
Pressure
Temperature of gases

1,900 mm
900 mm
17 sq meters
132 sq meters
25 sq meters
32 x 3 mm
25 x 2.6 mm
25 x 2.6 mm
1,200-2,600 kg per hour
50,000 cubic meters per hour
250 mm of water column
200°C

-9-

20. In addition, the boiler, which is fitted with an independent chimney, has a circulation pump with electric drive, steam piston pump, and a centrifugal pump with electric drive. The boiler does not affect the working of the Martin furnace but brings about an increase in its output of four-five percent. The fuel gas pump speeds up the cooling of the furnace when it is shut down. Plans for new Martin furnaces make allowances for the installation of utilizer-boilers.

Ventilators and Flue Gas Pumps (Draught and Blowing Equipment)

21. The factory produces over twenty different types of ventilators and flue gas pumps, including the following:

a. Bracket type single-sided blow ventilators VD-55/240

Output
Full pressure
Temperature of sucked atmosphere
Motor power
Rpm
Rpm
Weight
F55,000 cubic meters per hour
240 mm of water column
30°C
88 kw
730
2.2 tons

b. Bracket type single-sided blow ventilators VD-105/345

Output
Pressure
Temperature of sucked atmosphere
Motor power
Rpm
Weight

105,000 cubic meters per hour
345 mm of water column
30°C
220 kw
960
2.5 tons

c. Bracket type single-sided blow ventilators VD-105/300

Output 105,000 cubic meters per hour Pressure 300 mm of water column 30°C Motor power 198 kw Rpm 960 Weight 2.5 tons

d. Bracket type single-sided blow ventilator VD-125/390

Output
Pressure
Pressure
Temperature
Motor power
Rpm
Weight

125,000 cubic meters per hour
390 mm of water column
20°C
886 kw
,
960
2.6 tons

e. Bracket type single-sided blow ventilator VD-130/460

 Output
 130,000 cubic meters per hour

 Pressure
 460 mm

 Temperature
 20°C

 Rpm
 960

 Weight
 2.8 tons

-10-

f. Bracket mill type ventilator (konsolnyy melnichnyy ventilyator) VM-28/650

Output 28,000 cubic meters per hour Pressure 650 mm of water column 90°C Power 125 kw Rpm 1,450 Weight 2.43 tons

g. Bracket mill type ventilator VM-40/730

Output 40,000 cubic meters per hour Pressure 730 mm of water column 90°C Power 160 kw Rpm 1,450 2,4 tons

h. Bracket mill type ventilator VM-50/1000

 Output
 50,000 cubic meters per hour

 Pressure
 1,000 mm of water columns

 Temperature
 70°C

 Power
 245 kw

 Rpm
 1,450

 Weight
 3 tons

Bracket mill type ventilator VM-75/1200

Output 75,000 cubic meters per hour Pressure 1,200 mm of water column Temperature 70°C 430 kw
Rpm 1,450
Weight 4.3 tons

j. Sharp blast ventilator (ventilyator ostrogo dutya) VOD-6/300

Output 6,000 cubic meters per hour
Pressure 300 mm
Temperature 200°C
Power 20 kw
Rpm 2,950
Weight 0.77 tons

k. Sharp blast ventilator VOD-9/300

Output 9,000 cubic meters per hour
Pressure 300 mm
Temperature 225°C
Power 28 kw
Rpm 2,950
Weight 0.77 tons

1. Bracket type flue gas pump (konsolnyy dymosos) D-100/220

 Output
 100,000 cubic meters per hour

 Pressure
 290 mm (sic)

 Temperature
 200°C

 Power
 165 kw

 Rpm
 960

 Weight
 2.39 tons

-11-

m. Two-sided flue gas pump D-190

 Output
 200,000 cubic meters per hour

 Pressure
 250 mm

 Temperature
 200°C

 Power
 242 kw

 Rpm
 730

 Weight
 9.6 tons

n. Two-sided flue gas pump D-190-1

 Output
 175,000 cubic meters per hour

 Pressure
 125 mm

 Temperature
 200°C

 Power
 220 kw

 Rpm
 730

 Weight
 9.5 tons

o. Two-sided flue gas pump D-190-1A

 Output
 200,000 cubic meters per hour

 Pressure
 310 mm

 Temperature
 200°C

 Power
 297 kw

 Rpm
 960

 Weight
 9.5 tons

P. Two-sided flue gas pump D-190-2

Output 220,000 cubic meters per hour Pressure 185 mm 200°C Power 220 kw Rpm 730 Weight 220,000 cubic meters per hour 9.6 tons

q. Two-sided flue gas pump D-190-2-A

 Output
 240,000 cubic meters per hour

 Pressure
 375 mm

 Temperature
 200°C

 Power
 418 kw

 Rpm
 960

 Weight
 9.6 tons

r. Two-sided flue gas pump D-190-A

Output
Pressure
Pressure
425 mm
200°C
Power
500 kw
Rpm
960
Weight
240,000 cubic meters per hour
425 mm
200°C
900 kw
960

s. Two-sided flue gas pump D-250/300

Output 250,000 cubic meters per hour.
Pressure 300 mm
Temperature 200°C
Rpm 730
Weight 14.5 tons

-12-

t. Two-sided flue gas pump D-300/400

 Output
 300,000 cubic meters per hour

 Pressure
 430 mm

 Temperature
 200°C

 Power
 685 kw

 Rpm
 730

 Weight
 15.4 tons

Tubular Air Preheaters (Trubchatyy Vozdukhopodogrevatel)

22. The factory produces complete tubular air preheaters with tubes of 51/48 mm diameter, with heating surfaces ranging from 560 to 3,100 square meters, also sections of tubular air preheaters, and tubes of tubular air preheaters. Technical details of tubular air preheater sections are as follows:

a. Single-stage three-way section (odnostupenchataya trekhkhodovaya sektsiya)

Heating surface
Number of tubes
Length of tubes
Diameter of tubes
Dimensions of tube plate (trubnaya doska)
Weight of section
Number of sections in group

690 square meters
563
8,000 mm
51/48 mm
2,850 x 1,180 mm
9.25 tons
6 and 8

b. Single-stage two-way section

Heating surface

Number of tubes
Length of tubes
Diameter of tubes
Dimensions of tube plate
Weight of section
Number of sections in group

430 square meters
563
5,000 mm
51/48 mm
2,850 x 1,180 mm
6 tons

c. Single-stage three-way section

Heating surface 430 square meters
Number of tubes 563
Length of tubes 5,000 mm
Diameter of tubes 51/48 mm
Dimensions of tube plate 2,850 x 1,180 mm
Weight of section 6.tons
Number of sections in group 12 and 16

d. Two-stage section

1st Stage

Heating surface

Number of tubes

Length of tubes

Diameter of tubes

Dimensions of tube plate

Weight of section

Number of sections in group

718 square meters
769

6,050 mm

51/48 mm

3,350 x 1,258 mm

9.3 tons

-13-

2nd Stage

Heating surface 370 square meters Number of tubes 769 Length of tubes 3,050 mm Diameter of tubes 51/48 mm Dimensions of tube plate $3,350 \times 1,258 \text{ mm}$ Weight of section 5 tons Number of sections in group 8

Steel Coil Economizers

The factory produces many different types of economizers. Some technical details are given below.

Diameter of tubes at average pressure Diameter of collector tubes at average pressure

38/21 and 31/32 meters

Weight of 1 sq meter of heating surface

273/203 m and 325/225 mm 37 kg

Diameter of tubes at high pressure

38/30 mm and 38/28 mm

Diameter of collection tubes at high pressure

273/203

Weight of 1 square meter of heating surface

47 kg

Speed of water at low pressure Speed of water at high pressure

0.35 meters per second 0.5 meters per second

Drum and Ball Mills (Barabanno-Sharovaya Melnitsa)

Four types of drum and ball mills are produced. Technical details of two of these mills are given below:

BShM-287/470 a.

Output 16 tons of anthracite per hour Working length of drum 4,700 mm Internal diameter of mill 2,870 mm Diameter of connecting pipes (patrubok) 900 mm Volume of mill 30.8 cubic meters Rpm of drum 20.6 Rpm of electric motor 730 Power of electric motor 525 kw Weight of balls 39 tons

b. BShM-250/390

Output 10 tons per hour Type of electric motor AMO-157-3 Power of electric motor 300 kw Rpm of electric motor 730 Rpm of drum 23 Reducing gear ratio 5.25

Worm Feeders (Shnekovyy Pitatel)

- The factory produces five types of worm feeders for main burners (osnovnaya gorelka) and muffle burners (mufelnaya gorelka).
 - Worm feeder for main burners with turns of 240 mm diameter

Gear ratio

1:6.15

-14-

Output

Weight of feeder with welded body Type of motor

Motor power Revolutions adjustment limits 12 tons per hour

870 kg PN-85 0.9 kw

1,350 - 450

b. Worm feeder for main burners with turns of 151 mm diameter

Gear ratio

Output

Weight of feeder with welded body Type of motor

Motor power Revolutions adjustment limits

Up to 6 tons per hour

490 kg, with cast body 588 kg PN-85

0.9 kw 1,350-450

c. Worm feeder for main burners with turns of 151 mm diameter

Gear ratio

Output

Weight of feeder with welded body Type of motor

Motor power Revolutions adjustment limits

Up to 9 tons per hour

490 kg, with cast body 588 kg

PN-85 0.9 kw 1,350-450

d. Worm feeder for muffle burners with turns of 151 mm diameter and gear ratio

Output

Weight of feeder with welded body Type of motor

560 kg PN-85 0.9 kw

Motor power Revolutions adjustment limits

1,350 - 450

e. Worm feeder for muffle burners with turns of 151 mm diameter and gear ratio 1:11

Output

Motor power

Weight of feeder with welded body Type of motor

0.75 to 2.5 tons per hour 560 kg

0.5 to 1.5 tons per hour

PN-85 0.9 kw 1,350 - 450

Dust Worm Gears (Pylevoy Shnek)

26. Two types of dust worm gears are produced:

Revolutions adjustment limits

a. Dust worm gears with turns of 400 mm diameter

Maximum length of worm gear

50 meters

Revolutions

65

750

Output Weight of 1 running meter

20 tons per hour

131 kg

Reducing gear Number of shaft revolutions

ShR-20 with gear ratio 1: 11.4

Motor power with worm gear not

exceeding 35 meters

6.8 kw

Motor power with worm gear

exceeding 35 meters Weight of reducing gear

10.3 kw 390 kg

-15-

Dust worm gears with turns of 500 mm diameter

Maximum length of worm gear

35 meters

Revolutions

Output

57 45 tons per hour

Weight of 1 running meter

243 kg

Reducing gear Number of shaft revolutions

ShR-45 with gear ratio 1:13.2

Motor power

750

14.7 kw 644 kg

Weight of reducing gear

Coal Dust Slot Burners (Pyleugolnaya Shchelevaya Gorelka)

The factory produces six types of coal dust slot burners as follows:

a. Single (ordinarnaya) slot burner UShch-3A

Output

10 tons per hour

Weight

1.86 tons

b. Single slot burner UShch-3B

Output Weight

10 tons per hour

1.86 tons

c. Single slot burner UShch-4

Output Weight

7 tons per hour

1.52 tons

Double (sdvoyennaya) slot burner UShch-l

Output

10 tons per hour

Weight

2.74 tons

Double slot burner UShch-2

Output

Weight

14 tons per hour

2.73 tons

f. Double slot burner UShch-5

Output Weight

11 tons

2.6 tons

Muffle Burners (Mufelnaya Gorelka)

The factory produces five types of muffle burners with details as follows: 28.

a. Furnace chamber volume

Grate surface

Output Weight

0.34 cubic meters 0.44 square meters

600 kg per hour

.077 tons

b. Furnace chamber volume

Grate surface

Weight

Output

0.24 cubic meters

0.36 square meters

500 kg per hour

1.22 tons

-16-

c.	Furnace chamber volume Grate surface Output Weight	1.1 cubic meters 1.15 square meters 1,600 kg per hour 1.18 tons
a	Fummon chember well-	0.65

Furnace chamber volume 0.65 cubic meters Grate surface 0.85 square meters Output 1,200 kg per hour Weight 0.93 tons

e. Furnace chamber volume 1.55 cubic meters Grate surface 1.2 square meters Weight 1.65 tons

Coal Dust Turbulent Burners (Pyleugolnaya Turbulentnaya Gorelka)

29. Six types of turbulent burners are produced, including the following:

a. UT-1 Output 2 to 5 tons per hour Weight 1.2 tons Fuel Anthracite

b. UT-4 Output 2.5 to 4 tons per hour Weight 1.22 tons Fuel

Anthracite

Anthracite

c. <u>UT-5</u> Output 1.8 to 3 tons per hour

Weight 0.92 tons Fuel Anthracite

d. UT-6 Output 4.2 to 9.5 tons per hour Weight 1.35 tons Fuel

Moscow Basin coal e. <u>UT-</u>7 Output 3.5 to 7.5 tons per hour Weight 1.08 tons

<u>Pipes</u>

Fuel

The factory produces steel pipe lines of various diameters for electric power stations.

Oil Equipment for Cracking Plants

- 31. The factory produces over 100 different pieces of oil equipment for cracking plants. These include:
 - Vacuum columns (vakuumnaya kolonna) weighing about 54 tons each. These are covered inside with thin steel alloy sheeting (11-13 percent chromium).

-17-

- b. Fractionating columns for reforming plants and cracking plants
- c. Oxidizing columns with three meters diameter
- d. Condensers for columns
- e. Gas separators for light cracking columns
- f. Distillate cracking plant evaporators
- g. Fraction coolers (kholodilnik fraktsii)
- h. Steam distillate heat exchangers (parodestilatnyy teploobmennik)
- i. Evaporators
- j. Absorbers
- k. Reboilers
- 1. Regenerators
- m. Mud separators
- n. Sedimentation tanks (otstoinik)
- o. Parts for tubular furnaces
- p. Alko (sic) plates (tarelka alko)
- q. Cap plates (kolpachkovaya tarelka)
- r. Cascade plates (kaskadnaya tarelka)
- s. Gasoline transferring pumps
- t. Oil pipe lines
- u. Deaerator tanks
- v. Cylinders (ballon)

Agricultural Machinery

32. This includes four-share tractor ploughs, tanks for water and fuel, and spare parts for machinery.

OUTPUT

- 33. Because of the large number of articles produced it is not possible to give figures in respect to equipment manufactured. Some idea of the output in 1955 can be obtained from the following:
 - a. About 60,000 tons of steel of various kinds were used.
 - 500-540 pieces of oil equipment, exclusive of pumps, small articles, and spare parts, were produced.
 - c. 12-14 large powerful boilers of drum and uniflow types with steam output of 200 or more tons per hour and several times more medium power boilers were produced.

-18-

- d. Heating and industrial boilers running into three figures were produced.
- e. 900 to 1,000 ventilators and flue gas pumps were produced.
- About 30,000 nickel-plated bedsteads were produced by the Consumer Goods Shop,

PERSONNEL

34. The director is Kitov (fnu). He was director of the factory in 1949-1950, having previously been director of the Moscow Komega Factory. In 1950, he was appointed head of the Central Department of the Boiler and Turbine Industry of the Ministry of Transport and Heavy Machine Building of the USSR. After two and one half years in this post he returned to the factory as director, replacing Razdobarkin, (fnu). From 1943 until the middle of 1949, the director was Bentsion Gdaliyevich Khabenskiy. The following is a list of important personnel:

Deputy directors: Chief engineer: Chief technologist: Chief metallurgist:

Chief metallurgist:

Acting chief designer: Production chief:

Tsukerman (fnu) and Shpentser (fnu) Chernik (fnu)

Khrustachev (fnu)

Surovtsova (fnu), who is a Stalin prize

winner Chechik (fnu) Shikanyan (fnu)

35. The total number of employees is about 8,000. In some shops, there are three shifts and in others, two.

SHOPS

36. The following is a list of shops at the factory:

Preparatory Shop (Zagotovitelnyy Tsekh)

Transport Shop (Transportnyy Tsekh)

Machine Ship (Mekhanicheskiy Tsekh) 2nd Machine Shop (Vtoroy Mekhanicheskiy Tsekh) Foundry (Liteynyy Tsekh) Forge (Kuznechnyy Tsekh) Press Shop (Pressovyy Tsekh) Metal Construction Shop (Tsekh Metallokonstruktsii) Boiler Machine Shop (Kotelno-Mekhanicheskiy Tsekh) Boiler Assembly Shop (Kotelno-Sborochnyy Tsekh) Draught and Blowing Machine Shop (Tsekh Tyago-Dutevykh Mashin) Heavy Oil Equipment Shop (Tsekh Krupnoy Neftyanoy Apparatury) Light Oil Equipment Shop (Tsekh Melkoy Neftyanoy Apparatury) Pump Shop (Tsekh Nasosov) Pipe Shop (Trubnyy Tsekh) Machine Assembly Shop (Mekhano-Sborochnyy Tsekh) Metal Article Shop (Metiznyy Tsekh) Tool Shop (Instrumentalnyy Tsekh) Assembly Shop (Montazhnyy Tsekh) Electric Shop (Elektro-Tsekh) Machine Repair Shop (Remontno-Mekhanicheskiy Tsekh) Crane Shop (Kranovyy Tsekh) Building and Repair Shop (Remontno-Stroitelnyy Tsekh) Steam Power Shop (Paro-Silovoy Tsekh) Consumer Goods Shop (Tsekh Shirpotreba)

-19-

SOURCES OF MATERIAL

- 37. The factory obtains steel tubes from the following enterprises:
 - a. The Dnepropetrovsk Metallurgical Factory i/n Lenin (particularly tubes for uniflow boilers and including stainless steel tubes)
 - b. The Pervouralsk Novotrubnyy Factory i/n Stalin, No. 703
 - c. The Nikopol Yuzhnotrubnyy Factory
 - d. The Dnepropetrovsk Factory i/n Karl Libknekht
- 38. It obtains rolled, section, and sheet steel and wire from the following:
 - a. The Hammer and Sickle Factory in Moscow
 - b. The Elektrostal Factory in Moscow Oblast
- 39. The factory is supplied with stainless strip and sheet steel by the Elektrostal Factory in Moscow Oblast.
- 40. The boiler and oil equipment fittings come mostly from the Venyukovskiy Fittings Factory in Moscow Oblast.

CONSUMERS

41. Articles manufactured at the factory are marked ZIO (Zavod imeni Ordzhonikidze). They are sent to all areas of the USSR and also to other Communist countries, including China, Bulgaria, and Rumania. Oil equipment for cracking plants is sent to Baku, Saratov, Ishimbay, Groznyy, etc. Dobrin boilers and others are sent to all coal basins of the USSR and also abroad.

MISCELLANEOUS

- 42. The factory publishes a newspaper (mnogotirazhka) called Znamya Stakhanovtsa.
- 43. The equipment of the factory, of which about 70 percent has been replaced since the war, is in good condition. Most of the industrial buildings now require complete overhaul or major repairs.
- 44. The situation regarding housing for factory personnel is gradually improving, and new buildings are being erected annually. In 1953, two large six-storied blocks were built near the Pakhra River, facing the Podolsk Park of Culture and Rest.

1.	Comment:	The	remaining	portion	of	this	ratio	is	illegible.	25 X

